DECISION MAKING
IN SYSTEMS ENGINEERING
AND MANAGEMENT

Edited by

GREGORY S. PARNELL
PATRICK J. DRISCOLL
DALE L HENDERSON
Contents

Foreword xvii
Preface xix
Thoughts for Instructors xxiii
Contributors xxxii
Acknowledgments xxxiii
Acronyms xxxv

1 Introduction

Gregory Parnell and Patrick Driscoll

1.1 Purpose 1
1.2 System 3
1.3 Stakeholders 3
1.4 System Life Cycle 5
1.5 Systems Thinking 7
1.6 Systems Engineering Thought Process 8
1.7 Systems Engineering 10
1.8 Engineering Management 11
1.9 Systems Decision Process 12
1.10 Overview 13
1.11 Exercises 14
References 15
PART I SYSTEMS THINKING

2 Systems Thinking 19
Patrick J. Driscoll

2.1 Introduction 19
2.2 Structure 23
2.3 Classification 24
2.4 Boundaries 26
2.5 Visibility 29
2.6 IDEF1 Models 35
2.7 Mathematical Structure 38
2.8 Spatial Arrangement 44
2.9 Evolution 47
2.10 Summary 48
2.11 Exercises 49
References 52

System Life Cycle 55
Patrick J. Driscoll

3.1 Introduction 55
3.2 System Life Cycle Model 58
3.2.1 Establish System Need 58
3.2.2 Develop System Concept 60
3.2.3 Design and Develop System 60
3.2.4 Produce System 61
3.2.5 Deploy System 61
3.2.6 Operate System 62
3.2.7 Retire System 63
3.3 Other Major System Life Cycle Models 69
3.4 Risk Analysis in the System Life Cycle 70
3.4.1 Risk Assessment in the System Life Cycle 69
3.4.2 Prioritizing Risks for Risk Management 70
3.5 Summary 75
3.6 Exercises 76
References 77

Systems Modeling and Analysis 79
Paul D. West, John E. Kobza, and Simon R. Goerger

4.1 Introduction 79
4.2 Developing System Measures 80
4.3 Modeling the System Design 82
4.3.1 What Models Are 83
4.3.2 Why We Use Models 83
CONTENTS

4.3.3 Role of Models in Solution Design 85
4.3.4 Qualities of Useful Models 85

4.4 The Modeling Process - How We Build Models 88
4.4.1 Create a Conceptual Model 88
4.4.2 Construct the Model 90
4.4.3 Exercise the Model 90
4.4.4 Revise the Model 92

4.5 The Model Toolbox: Types of Models, Their Characteristics, and Uses 92
4.5.1 Characteristics of Models 95
4.5.2 The Model Toolbox 98

4.6 Simulation Modeling 105
4.6.1 Analytical Solutions versus Simulation; When it is Appropriate to Use Simulation 105
4.6.2 Simulation Tools 106

4.7 Determining Required Sample Size 111
4.8 Summary 114
4.9 Exercises 114

References

5 Life Cycle Costing 119
Edward Pohl and Heather Nachtman

5.1 Introduction to Life Cycle Costing 119
5.2 Introduction to Cost Estimating Techniques 121
5.2.1 Types of Costs 125
5.3 Cost Estimation Techniques 126
5.3.1 Estimating by Analogy Using Expert Judgment 127
5.3.2 Parametric Estimation Using Cost Estimating Relationships 128
5.3.3 Learning Curves 141
5.4 System Cost for Systems Decision Making 147
5.4.1 Time Value of Money 147
5.4.2 Inflation 148
5.4.3 Net Present Value 151
5.4.4 Breakeven Analysis and Replacement Analysis 152
5.5 Risk and Uncertainty in Cost Estimation 152
5.5.1 Monte Carlo Simulation Analysis 153
5.5.2 Sensitivity Analysis 157
5.6 Summary 158
5.7 Exercises 159

References
PARTII SYSTEMS ENGINEERING

6 Introduction to Systems Engineering
Gregory S. Parnell

6.1 Introduction
6.2 Definition of System
6.3 Brief History of Systems Engineering
6.4 Systems Trends that Challenge System Engineers
6.5 Three Fundamental Tasks of Systems Engineers
6.6 Relationship of Systems Engineers to Other Engineering Disciplines
6.7 Education and Training of Systems Engineers
6.8 Exercises

References

7 Systems Engineering In Professional Practice
Roger C. Burk

7.1 The Systems Engineer in the Engineering Organization
7.1.1 The Systems Engineering Job
7.1.2 Three Systems Engineering Perspectives
7.1.3 Organizational Placement of Systems Engineers

7.2 Systems Engineering Activities
7.2.1 Establish System Need
7.2.2 Develop System Concept
7.2.3 Design and Develop the System
7.2.4 Produce System
7.2.5 Deploy System
7.2.6 Operate System
7.2.7 Retire System

7.3 The Systems Engineer and Others
7.3.1 The SE and the Program Manager
7.3.2 The SE and the Customer, the User, and the Consumer
7.3.3 The SE and the CTO or CIO
7.3.4 The SE and the Operations Researcher or System Analyst
7.3.5 The SE and the Configuration Manager
7.3.6 The SE and the Life-Cycle Cost Estimator
7.3.7 The SE and the Engineering Manager
7.3.8 The SE and the Discipline Engineer
7.3.9 The SE and the Test Engineer
7.3.10 The SE and the Specialty Engineer
7.3.11 The SE and the Industrial Engineer
7.3.12 The SE and Quality Assurance
CONTENTS

7.4 Building an Interdisciplinary Team

7.4.1 Team Fundamentals

7.4.2 Team Attitude

7.4.3 Team Selection

7.4.4 Team Life Cycle

7.5 Systems Engineering Responsibilities

7.5.1 Systems Engineering Management Plan (SEMP)

7.5.2 Technical Interface with Users and Consumers

7.5.3 System Requirements Analysis and Management

7.5.4 System Architecting

7.5.5 Interface Control Documents (ICDs)

7.5.6 Test and Evaluation Master Plan (TEMP)

7.5.7 Configuration Management (CM)

7.5.8 Specialty Engineering

7.5.9 Major Program Technical Reviews

7.5.10 System Integration and Test

7.6 Roles of the System Engineer

7.7 Characteristics of the Ideal Systems Engineer

7.8 Summary

7.9 Exercises

References

8 System Effectiveness

Edward Poht

8.1 Introduction to System Effectiveness

8.2 Reliability Modeling

8.3 Mathematical Models in Reliability

8.3.1 Common Continuous Reliability Distributions

8.3.2 Common Discrete Distributions

8.4 Basic System Models

8.4.1 Series System

8.4.2 Parallel System

8.4.3 JC-out-of-JV Systems

8.4.4 Complex Systems

8.5 Component Reliability Importance Measures

8.5.1 Importance Measure for Series System

8.5.2 Importance Measure for Parallel System

8.6 Reliability Allocation and Improvement

8.7 Markov Models of Repairable Systems

8.7.1 Kolmogorov Differential Equations

8.7.2 Transient Analysis

8.7.3 Steady State Analysis

References
PART III SYSTEMS DECISION MAKING

9 Systems Decision Process Overview
Gregory 5. Pametl and Paul D. West

9.1 Introduction
9.2 Value-Focused Versus Alternative-Focused Thinking
9.3 Decision Quality
9.4 Systems Decision Process
9.5 Role of Stakeholders
9.6 Role of Decision Makers
9.7 Environment
9.8 Comparison with Other Processes
9.9 When to Use the Systems Decision Process
9.10 Tailoring the Systems Decision Process to the Systems Engineering Project
9.11 Example of Use of the Systems Decision Process
9.12 Illustrative Example: Systems Engineering Curriculum Management System (CMS)—Summary and Introduction
9.13 Exercises
References

10 Problem Definition
Timothy Trainor and Gregory S. Pametl

10.1 Introduction
10.1.1 Introduction to the Problem Definition Phase
10.1.2 Comparison with Other Systems Engineering Processes
10.1.3 Purpose of the Problem Definition Phase
10.1.4 Chapter Example
10.2 Stakeholder Analysis
10.2.1 Introduction
10.2.2 Techniques for Stakeholder Analysis
10.2.3 Stakeholder Analysis for the Rocket System Decision Problem
10.2.4 Conclusion
10.3 Functional Analysis

References
11.5 Summary
11.6 Illustrative Example: Systems Engineering Curriculum Management System (CMS)—Solution Design
11.7 Exercises
References

12 Decision Making
Michael J. Kwinn, Jr. and Gregory S. Parnell

12.1 Introduction
12.2 Preparing to Score Candidate Solutions
 12.2.1 Revised Problem Statement
 12.2.2 Value Models
 12.2.3 Candidate Solutions
 12.2.4 Modeling and Simulation Results
 12.2.5 Confirm Value Measure Ranges and Weights
12.3 Four Scoring Methods
 12.3.1 Operations
 12.3.2 Testing
 12.3.3 Modeling
 12.3.4 Simulation
 12.3.5 Expert Opinion
 12.3.6 Revisit Value Measures and Weights
12.4 Score Candidate Solutions or Candidate Components
 12.4.1 Software for Decision Analysis
 12.4.2 Candidate Solution Scoring and Value Calculation
 12.4.3 Candidate Components Scoring and System Optimization
12.5 Conduct Sensitivity Analysis
 12.5.1 Analyzing Sensitivity on Weights
 12.5.2 Sensitivity Analysis on Weights Using Excel
 12.5.3 Conduct Monte Carlo Simulation on Measure Scores
12.6 Use Value-Focused Thinking to Improve Solutions
12.7 Conduct Cost Analysis
12.8 Conduct Cost/Benefit Analysis
12.9 Prepare Recommendation Report and Presentation
 12.9.1 Develop Report
 12.9.2 Develop Presentation
12.10 Prepare for Solution Implementation
12.11 Illustrative Example: Systems Engineering Curriculum Management System (CMS)—Decision Making
12.12 Exercises
References
13 Solution Implementation
Robert Powell

13.1 Introduction
13.2 The Solution Implementation Phase
13.3 Planning for Action: The Work Breakdown Structure
13.4 System Performance Measurement
13.4.1 Monitoring
13.4.2 Assessing
13.4.3 Controlling
13.5 Solution Implementation Strategy
13.6 Implementation for the "Produce the System" Life Cycle Stage
13.6.1 Planning for Action
13.6.2 Developing the Organization
13.6.3 Execution
13.6.4 Assessment and Control
13.7 Implementation for the "Deploy the System" Life Cycle Stage
13.7.1 Planning for Action
13.7.2 Execution
13.7.3 Assessment and Control
13.8 Implementation in the "Operate the System" Life Cycle Stage
13.8.1 Planning for Action
13.8.2 Execution
13.8.3 Assessment and Control
13.9 Summary
13.10 Illustrative Example: Systems Engineering Curriculum Management System (CMS)—Implementation
13.11 Exercises
References

14 Summary
Gregory S. Parnell

14.1 Systems Thinking is the Key to Systems Engineering and Systems Decision Making
14.1.1 Systems Thinking Focuses on System Behavior in the Current and Future Operating Environment
14.1.2 System Managers Must Consider the System Life Cycle
14.1.3 Modeling and Simulation are Important Tools for Systems Engineers
14.1.4 The System Life Cycle is a Key Risk Management Tool
14.1.5 Life Cycle Costing is an Important Tool for Systems Engineering
14.2 Systems Engineers Play a Critical Role in the System Life Cycle
14.2.1 Systems Engineers Lead Interdisciplinary Teams to Obtain System Solutions That Create Value for Decision Makers and Stakeholders 431
14.2.2 Systems Engineers Convert Stakeholder Needs to System Functions and Requirements 431
14.2.3 Systems Engineers Define Value and Manage System Effectiveness 432
14.2.4 Systems Engineers Have Key Roles Throughout the System Life Cycle 432

14.3 A Systems Decision Process is Required for Complex Systems Decisions 432
14.3.1 Problem Definition is the Key to Systems Decisions 433
14.3.2 If We Want Better Decisions, We Need Better System Solution Designs 433
14.3.3 We Need to Identify the Best Value for the Resources 433
14.3.4 Solution Implementation Requires Planning and Execution 433

14.4 Systems Engineering will Become More Challenging 434

Index 435