COMPUTER-SUPPORTED COLLABORATION
WITH APPLICATIONS TO SOFTWARE DEVELOPMENT

by

or

Fadi P. Deek
James A. M. McHugh
New Jersey Institute of Technology, U.S.A.

KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London
# Contents

## Preface . 1

### 1. COGNITIVE AND SOCIAL PSYCHOLOGY IN COLLABORATION 7

1. INTRODUCTION 7
2. COGNITIVE MODELS 8
   2.1 Software Methods and Cognitive Models 8
   2.2 Models of Group Cognition 9
   2.3 Models of Individual Cognition 13
3. COGNITIVE EFFECTS AND BIASES 15
4. SOCIAL PSYCHOLOGY FACTORS 19
   4.1 Norms, Roles and Protocols 19
   4.2 Social Psychology: Processes and Effects 21
5. SOCIALLY AWARE SYSTEMS 24

### 2. MEDIA FACTORS IN COLLABORATION 27

1. INTRODUCTION 27
2. ENVIRONMENTAL FACTORS AFFECTING COLLABORATION 28
3. VISUAL AND AUDITORY CUES IN FACE-TO-FACE COLLABORATION 32
4. VIDEO VERSUS AUDIO-ONLY 35
5. PROXEMIC EFFECTS 40
6. DIALOG STRUCTURE 41
3. GROUP PROBLEM-SOLVING: TASKS, PRODUCTIVITY, EARLY EXPERIMENTS

1. INTRODUCTION
2. GROUP PRODUCTIVITY AND TYPES OF TASKS
3. GROUP PROBLEM SOLVING ON DISJUNCTIVE TASKS
4. CHARACTERISTICS OF GROUPS

4. COMPUTER-SUPPORTED PROCESSES AND PRODUCTIVITY

1. INTRODUCTION
2. PROCESS GAINS AND LOSSES
   2.1 Production Blocking
   2.2 Anonymity and Free-Riding
3. STRUCTURING INTERACTIONS
   3.1 Cognitive Engineering
   3.2 Structuring Methods
   3.2.1 Process and Task Structures
   3.2.2 Process Support Tools

5. COMMUNICATION AND INFORMATION IN ORGANIZATIONS AND GROUPS

1. INTRODUCTION
2. EFFECTS OF ORGANIZATIONAL EMBEDDING
   2.1 The Effect of Organizational Context
   2.2 Communication and Coordination in Software Teams and Organizations
3. INFORMATION SHARING
3.4 Experimental Design Recommendations and Critique

IV 4. COMPUTER-SUPPORTED BRAINSTORMING STUDIES

4.1 Brainstorming Studies
4.2 Brainstorming Techniques
4.3 Experimental Critique

5. SOFTWARE DEVELOPMENT TASKS

5.1 Collaborative Design Activities
5.2 Communication Patterns in Development
5.3 Collaboration in Technical Reviews

8. COLLABORATIVE-COGNITIVE MODEL FOR INTRODUCTORY SOFTWARE DEVELOPMENT

1. INTRODUCTION

2. PROBLEM SOLVING
2.1 Problem Solving Methods and Concepts
2.2 A Standard Model for Problem Solving

3. SOFTWARE DEVELOPMENT
3.1 Language Acquisition
3.2 Program Composition
3.3 Comprehension, Reuse, and Integration of Existing Programs
3.4 Debugging
3.5 Testing
3.6 Modification and Maintenance
3.7 Documentation

4. COMPOSITE COGNITIVE MODEL FOR PROBLEM SOLVING BASED INTRODUCTORY SOFTWARE DEVELOPMENT
4.1 Explicit Cognitive Model For Problem Solving
4.1.1 Bloom's Cognitive Processes
4.1.2 Steinberg's Cognitive Structure
4.1.3 Gagne's Cognitive Results
4.1.4 Individual Level Cognitive Model
4.2.1 Problem Formulation 163
   4.2.1.1 Preliminary Problem Description 164
   4.2.1.2 Preliminary Mental Model 164
   4.2.1.3 Structured Representation of Problem 165
   4.2.1.4 Relation to Cognitive Model 165
4.2.2 Planning the Solution 166
   4.2.2.1 Strategy Discovery 167
   4.2.2.2 Goal Decomposition 167
   4.2.2.3 Data Modeling 167
   4.2.2.4 Relation to Cognitive Model 168
4.2.3 Designing the Solution 169
   4.2.3.1 Organization and Refinement 170
   4.2.3.2 Function/Data Specification 170
   4.2.3.3 Logic Specification 171
   4.2.3.4 Relation to Cognitive Model 171
4.2.4 Translation 172
   4.2.4.1 Implementation 172
   4.2.4.2 Integration 172
   4.2.4.3 Diagnosis 172
   4.2.4.4 Relation to Cognitive Model 173
4.2.5 Testing 174
   4.2.5.1 Critical Analysis 174
   4.2.5.2 Revision 174
   4.2.5.3 Evaluation 175
   4.2.5.4 Relation to Cognitive Model 175
4.2.6 Delivery 176
   4.2.6.1 Documentation, Presentation and Distribution 176
   4.2.6.2 Relation to Cognitive Model 177
5. COLLABORATIVE FACTORS IN SOFTWARE DEVELOPMENT 178
  5.1 Global Collaborative Factors 179
  5.2 Local Collaborative Factors 180
    5.2.1 Problem Formulation 180
    5.2.2 Planning 183
    5.2.3 Solution Design 184
    5.2.4 Translation 184
    5.2.5 Testing 185