Contents

Acknowledgments for the Second Edition xvi

Series Editor's Introduction to Hierarchical Linear Models xix

Series Editor's Introduction to the Second Edition xxiii

Introduction 3

Hierarchical Data Structure: A Common Phenomenon 3

Persistent Dilemmas in the Analysis of Hierarchical Data 5

A Brief History of the Development of Statistical Theory for Hierarchical Models 5

Early Applications of Hierarchical Linear Models 6

Improved Estimation of Individual Effects 7

Modeling Cross-Level Effects 8

Partitioning Variance-Covariance Components 9

New Developments Since the First Edition 10

An Expanded Range of Outcome Variables 10

Incorporating Cross-Classified Data Structures 11

Multivariale Model 12

Latent Variable Models 13

Bayesian Inference 13

Organization of the Book 14
2. The Logic of Hierarchical Linear Models

- Preliminaries 16
 - A Study of the SES-Achievement Relationship in One School 16
 - A Study of the SES-Achievement Relationship in Two Schools 18
 - A Study of the SES-Achievement Relationship in J Schools 18
- A General Model and Simpler Submodels 23
 - One-Way ANOVA with Random Effects 23
 - Means-as-Outcomes Regression 24
 - One-Way ANCOVA with Random Effects 25
 - Random-Coefficients Regression Model 26
 - Intercepts- and Slopes-as-Outcomes 27
 - A Model with Nonrandomly Varying Slopes 28
- Section Recap 28

Generalizations of the Basic Hierarchical Linear Model 29
- Multiple Xs and Multiple Ws 29
- Generalization of the Error Structures at Level 1 and Level 2 30
- Extensions Beyond the Basic Two-Level Hierarchical Linear Model 31

Choosing the Location of X and W (Centering) 31
- Location of the Xs 32
- Location of Ws 35

Summary of Terms and Notation Introduced in This Chapter 35
- A Simple Two-Level Model 35
- Notation and Terminology Summary 36
- Some Definitions 36
- Submodel Types 36
- Centering Definitions 37
- Implications for p_{ij} 37

3. Principles of Estimation and Hypothesis Testing for Hierarchical Linear Models 38

- Estimation Theory 38
 - Estimation of Fixed Effects 38
 - Estimation of Random Level-1 Coefficients 45
 - Estimation of Variance and Covariance Components 51
- Hypothesis Testing 56
 - Hypothesis Tests for Fixed Effects 57
 - Hypothesis Tests for Random Level-1 Coefficients 61
Hypothesis Testing for Variance and Covariance Components

Summary of Terms Introduced in This Chapter

4. An Illustration

Introduction 68
The One-Way ANOVA 69
 The Model 69
 Results 70
Regression with Means-as-Outcomes 72
 The Model 72
 Results 73
The Random-Coefficient Model 75
 The Model 75
 Results 77
An Intercepts- and Slopes-as-Outcomes Model 80
 The Model 80
 Results 81
Estimating the Level-1 Coefficients for a Particular Unit 85
 Ordinary Least Squares 86
 Unconditional Shrinkage 87
 Conditional Shrinkage 90
 Comparison of Interval Estimates 92
 Cautionary Note 94
Summary of Terms Introduced in This Chapter 94

5. Applications in Organizational Research 99
Background Issues in Research on Organizational Effects 99
Formulating Models 100
 Person-Level Model (Level I) 100
 Organization-Level Model (Level 2) 101
Case 1: Modeling the Common Effects of Organizations via Random-Intercept Models 102
 A Simple Random-Intercept Model 102
 Example: Examining School Effects on Teacher Efficacy 103
 Comparison of Results with Conventional Teacher-Level and School-Level Analyses 107
 A Random-Intercept Model with Level-1 Covariates 111
 Example: Evaluating Program Effects on Writing 112
 Comparison of Results with Conventional Student- and Classroom-Level Analyses 113
Case 2: Explaining the Differentiating Effects of Organizations via Intercepts- and Slopes-as-Outcomes Models

Difficulties Encountered in Past Efforts at Modeling Regression Slopes-as-Outcomes

Example: The Social Distribution of Achievement in Public and Catholic High Schools

Applications with Both Random and Fixed Level-1 Slopes

Special Topics

Applications with Heterogeneous Level-1 Variance

Example: Modeling Sector Effects on the Level-1 Residual Variance in Mathematics Achievement

Data-Analytic Advice About the Presence of Heterogeneity at Level 1

Centering Level-1 Predictors in Organizational Effects

Applications

Estimating Fixed Level-1 Coefficients

Disentangling Person-Level and Compositional Effects

Estimating Level-2 Effects While Adjusting for Level-1 Covariates

Estimating the Variances of Level-1 Coefficients

Estimating Random Level-1 Coefficients

Use of Proportion Reduction in Variance Statistics

Estimating the Effects of Individual Organizations

Conceptualization of Organization Specific Effects

Commonly Used Estimates of School Performance

Use of Empirical Bayes Estimators

Threats to Valid Inference Regarding Performance Indicators

Power Considerations in Designing Two-Level Organization Effects Studies

6. Applications in the Study of Individual Change

Background Issues in Research on Individual Change

Formulating Models

Repeated-Observations Model (Level 1)

Person-Level Model (Level 2)

Linear Growth Model

Example: The Effect of Instruction on Cognitive Growth

A Quadratic Growth Model
Example: The Effects of Maternal Speech on Children's Vocabulary 170

Some Other Growth Models 176
 More Complex Level-1 Error Structures 177
 Piecewise Linear Growth Models 178
 Time-Varying Covariates 179

Centering of Level-1 Predictors in Studies of Individual Change 181

Definition of the Intercept in Linear Growth Models 181

Definitions of Other Growth Parameters in Higher-Order Polynomial Models 182

Possible Biases in Studying Time-Varying Covariates 183

Estimation of the Variance of Growth Parameters 183

Comparison of Hierarchical, Multivariate Repeated-Measures, and Structural Equation Models 185
 Multivariate Repeated-Measures (MRM) Model 185
 Structural Equation Models (SEM) 186
 Case 1: Observed Data are Balanced 188
 Case 2: Complete Data are Balanced 189
 Case 3: Complete Data are Unbalanced 196

Effects of Missing Observations at Level 1 199

Using a Hierarchical Model to Predict Future Status 200

Power Considerations in Designing Studies of Growth and Change 202

7. Applications in Meta-Analysis and Other Cases where Level-1 Variances are Known 205

Introduction 205
 The Hierarchical Structure of Meta-Analytic Data 206
 Extensions to Other Level-1 "Variance-Known" Problems 207
 Organization of This Chapter 207

Formulating Models for Meta-Analysis 208
 Standardized Mean Differences 208
 Level-1 (Within-Studies) Model 209
 Level-2 (Between-Studies) Model 209
 Combined Model 210
 Estimation 210

Example: The Effect of Teacher Expectancy on Pupil IQ 210
 Unconditional Analysis 212
 Conditional Analysis 213
 Bayesian Meta-Analysis 217
Other Level-1 Variance-Known Problems 217
 Example: Correlates of Diversity 219
The Multivariate V-Known Model 222
 Level-1 Model 222
 Level-2 Model 223
Meta-Analysis of Incomplete Multivariate Data 224
 Level-1 Model 224
 Level-2 Model 225
Illustrative Example 225

8. Three-Level Models 228
 Formulating and Testing Three-Level Models 228
 A Fully Unconditional Model 228
 Conditional Models 231
 Many Alternative Modeling Possibilities 233
 Hypothesis Testing in the Three-Level Model 234
 Example: Research on Teaching 235
 Studying Individual Change Within Organizations 237
 Unconditional Model 238
 Conditional Model 241
 Measurement Models at Level 1 245
 Example: Research on School Climate 245
 Example: Research on School-Based Professional Community and the Factors That Facilitate It 248
 Estimating Random Coefficients in Three-Level Models 250

9. Assessing the Adequacy of Hierarchical Models 252
 Introduction 252
 Thinking about Model Assumptions 253
 Organization of the Chapter 253
 Key Assumptions of a Two-Level Hierarchical Linear Model 254
 Building the Level-1 Model 256
 Empirical Methods to Guide Model Building at Level 1 257
 Specification Issues at Level 1 259
 Examining Assumptions about Level-1 Random Effects 263
 Building the Level-2 Model 267
 Empirical Methods to Guide Model Building at Level 2 268
 Specification Issues at Level 2 271
 Examining Assumptions about Level-2 Random Effects 273
 Robust Standard Errors 276
 Illustration 279
 Validity of Inferences when Samples are Small 280
Inferences about the Fixed Effects 281
Inferences about the Variance Components 283
Inferences about Random Level-1 Coefficients 284
Appendix 285
Misspecification of the Level-1 Structural Model 285
Level-1 Predictors Measured with Error 286

The Two-Level HLM as a Special Case of HGLM 293
Level-1 Sampling Model 293
Level-1 Link Function 293
Level-1 Structural Model 294
Two- and Three-Level Models for Binary Outcomes 294
Level-1 Sampling Model 294
Level-1 Link Function 295
Level-1 Structural Model 295
Level-2 and Level-3 Models 296
A Bernoulli Example: Grade Retention in Thailand 296
Population-Average Models 301
A Binomial Example: Course Failures During First Semester of Ninth Grade 304
Hierarchical Models for Count Data 309
Level-1 Sampling Model 309
Level-1 Link Function 310
Level-1 Structural Model 310
Level-2 Model 310
Example: Homicide Rates in Chicago Neighborhoods 311
Hierarchical Models for Ordinal Data 317
The Cumulative Probability Model for Single-Level Data 317
Extension to Two Levels 321
An Example: Teacher Control and Teacher Commitment 322
Hierarchical Models for Multinominal Data 325
Level-1 Sampling Model 326
Level-1 Link Function 326
Level-1 Structural Model 327
Level-2 Model 327
Illustrative Example: Postsecondary Destinations 327
Estimation Considerations in Hierarchical Generalized Linear Models 332
Summary of Terms Introduced in This Chapter 333

11. Hierarchical Models for Latent Variables 336
Regression with Missing Data 338
Multiple Model-Based Imputation 338
Applying HLM to the Missing Data Problem 339
Regression when Predictors are Measured with Error 346
Incorporating Information about Measurement Error in Hierarchical Models 347
Regression with Missing Data and Measurement Errors 351
Estimating Direct and Indirect Effects of Latent Variables 351
A Three-Level Illustrative Example with Measurement Error and Missing Data 352
The Model 354
A Two-Level Latent Variable Example for Individual Growth 361
Nonlinear Item Response Models 365
A Simple Item Response Model 365
An Item Response Model for Multiple Traits 368
Two-Parameter Models 370
Summary of Terms Introduced in This Chapter 371
Missing Data Problems 371
Measurement Error Problems 371

12. Models for Cross-Classified Random Effects 373
Formulating and Testing Models for Cross-Classified Random Effects 376
Unconditional Model 376
Conditional Models 379
Example I: Neighborhood and School Effects on Educational Attainment in Scotland 384
Unconditional Model 385
Conditional Model 387
Estimating a Random Effect of Social Deprivation 389
Example 2: Classroom Effects on Children's Cognitive Growth During the Primary Years 389
Summary 396
Summary of Terms Introduced in This Chapter 396

13. Bayesian Inference for Hierarchical Models 399
An Introduction to Bayesian Inference 400
Classical View 401
Bayesian View 401
Example: Inferences for a Normal Mean 402
Classical Approach 402
Bayesian Approach

Some Generalizations and Inferential Concerns

A Bayesian Perspective on Inference in Hierarchical Linear Models

Full Maximum Likelihood (ML) of y, T, and \(\sigma^2 \)

REML Estimation of T and \(\sigma^2 \)

The Basics of Bayesian Inference for the Two-Level HLM

Model for the Observed Data

Stage-1 Prior

Stage-2 Prior

Posterior Distributions

Relationship Between Fully Bayes and Empirical Bayes Inference

Example: Bayes Versus Empirical Bayes Meta-Analysis

Bayes Model

Parameter Estimation and Inference

A Comparison Between Fully Bayes and Empirical Bayes Inference

Gibbs Sampling and Other Computational Approaches

Application of the Gibbs Sampler to Vocabulary Growth Data

Summary of Terms Introduced in This Chapter

14. Estimation Theory

Models, Estimators, and Algorithms

Overview of Estimation via ML and Bayes

ML Estimation

Bayesian Inference

ML Estimation for Two-Level HLMs

ML Estimation via EM

The Model

M Step

E Step

Putting the Pieces Together

ML Estimation for HLM via Fisher Scoring

Application of Fisher-IGLS to Two-Level ML

ML Estimation for the Hierarchical Multivariate Linear Model (HMLM)

The Model

EM Algorithm

Fisher-IGLS Algorithm
Estimation of Alternative Covariance Structures 452

Discussion 454

Estimation for Hierarchical Generalized Linear Models 454

Numerical Integration for Hierarchical Models 456

Application to Two-Level Data with Binary Outcomes 457

Penalized Quasi-Likelihood 457

Closer Approximations to ML 459

Representing the Integral as a Laplace Transform 460

Application of Laplace to Two-Level Binary Data 462

Generalizations to other Level-1 Models 463

Summary and Conclusions 465

References 467

Index 477

About the Authors 485